SibFU 5 February 2012

STRUCTURAL BIOLOGY

Luminol and Quinine are photon calibration standards

Lecture 5. The Structures of Bioluminescence Proteins

The biochemist's articles of faith:

- 1. The spatial structure of proteins is determined by the **sequence** of amino acid residues comprising the protein polymer.
- 2. The binding site **environment** modulates the properties of a bound molecule, for ultimate benefit to the organism.

3-Dimensional Structure of Proteins

Determination of the spatial structure of your favorite protein usually will lead to significant advances in understanding its function.

The Protein Data Bank (**PDB**) contains about 55,000 structures most by X-ray crystallography. 10% are determined by Nuclear Magnetic Resonance (NMR).

Crystallography or NMR?

NMR

- 1. Protein structure is in solution state
- 2. Needs recombinant protein isotope enriched: ¹³C, ¹⁵N
- 3. Mass limit < 30 kDa

X-ray

- 1. Crystal state usually at 77K.
- 2. Needs a high quality single crystal >
- 0.1 mm dimension.

Magnetic Nuclei

 The nuclei of these isotopes are magnetic. ¹H ¹³C ¹⁵N ³¹P

 Molecules will align in a in a strong field:

900 MHz NMR Spectrometer

University of Georgia

Principle of NMR

Shine in a radio-frequency pulse of exactly the right frequency = **resonance**, will flip the nuclear magnets

Reverse the proton magnet

NMR Spectrometer

Every nucleus has its own resonance

Parts per million (ppm)

Multinuclear Interactions

- The magnetic property of each nucleus will also influence each other.
- Clever editing of signals called "NMR Experiments" can untangle these.

HSQC-NMR GIVES ONE 2D PEAK FOR EVERY NH

And forms the base to modern resonance assignment

2-Dimensional NMR of Obelin

¹⁵N⇔¹H interactions are mapped here

1. Obelin before adding Ca²⁺

2. After bioluminescence

Ca²⁺-discharged obelin

Structure of Bioluminescence Proteins

The majority of protein spatial structures have been determined by **X-ray** crystallography.

Here is a short tutorial:

http://ruppweb.dyndns.org/

click on "My old Crystallography 101"

Principles of X-Ray Diffraction

Bragg's Law (1913)

X-Ray Method

4-Circle Gonoimeter (Eulerian or Kappa Geometry)

The Crystal

To apply crystallography you only need:

- 1. Clone and **express** the protein so you can purify amounts > 10 mg.
- 2. Single crystals > 0.1 mm; usually obtained by methods of "black magic".
- 3. Well equipped X-ray lab at home and access to one of the international (>**\$1B**) light sources (Japan, US, UK, Germany).

Advanced Photon Source, Argonne

Crystallographic experimental procedure

OL-obelin Crystal

Obelin from Obelia Iongissima

Space group: P6₂

Cell parameters: a = 81.62 Å c = 86.12 Å

Resolution: 1.73 Å

Dimensions 0.1x0.1x1.0 mm

3-D Bioluminescence

 Available structures of proteins can be viewed and manipulated interactively in the Protein Data Bank:

www.wwpdb.org/

 Click RCSB PDB, type keyword or PDB code, then click "View Structure".

Bioluminescence Structures

1995-2011

Bacterial luciferase from *Vibrio*Firefly luciferases
Green-fluorescent Proteins (GFP)
Aequorin, obelins, clytin
Lumazine Protein
Dinoflagellate luciferase *Renilla* luciferases *Renilla* coelenterazine binding protein

Structure of obelin at 1.73 Å

Liu et al., Protein science 9, 2000

Coelenterazine-oxygen complex covered by electron density map at atomic resolution (1.0

obelin

After binding one calcium

Coelenterazine-OOH

Ball and Stick

Hydrogen Bond Network

Conclusions

- Coelenterazine lies in a protein cavity
 Electron density nearby its 2-position shows peroxy substitution.
- Hydrogen bonds between atoms of coelenterazine side chains stabilize the peroxy
 And also modulate excited state energy level of the emitter.

GFP Shifts Photoprotein Bioluminescence

Inclusion of clytia GFP in the bioluminescence from the Ca²⁺-regulated photoprotein clytin, shifts the spectrum to the GFP fluorescence. The mechanism is by <u>Förster Resonance Energy</u> <u>Transfer (FRET)</u>.

Markova 2010

Spectral Overlap

The large overlap of the blue bioluminescence of clytin with the black GFP absorbance (black), favors the resonance energy transfer.

A Clytin-GFP protein-protein complex?

- FRET requires a donor-acceptor separation < ~50 Å
- At 1 μM, free clytin and GFP ~ 1000 Å
- Where is this $K_D \sim 1 \, \mu M$ FRET complex?
- Observed protein- protein equilibrium K_D~1 mM!

Hypothesis #1

A complex forms before reaction:

Clytin + GFP
$$\rightleftharpoons$$
 clytin-GFP \downarrow Ca²⁺ \downarrow Ca²⁺ blue green

Hypothesis #1 FAILS

Hypothesis #2

A complex will be found with the reaction product.

Ca²⁺-discharged clytin + GFP *⇒* complex

We'll test this hypothesis for complexation using fluorescence dynamics.

Fluorescence Dynamics

Fluorescence quantum yield, Q_F \equiv probability of photon emission

Time-resolved Fluorescence

Donor Fluorescence decay

Acceptor fluorescence decay

Malikova 2011

No change in donor lifetime

A mixture of Ca²⁺-discharged clytin and GFP shows the donor decay lifetime the same as donor alone.

→ No detectable complex!

Fluorescence Polarization

Vertically polarized excitation will result in the fluorescence having both vertical (**V**) and horizontal (**H**) components.

Polarization and Anisotropy

Steady State

polarization,
$$P = V - H$$
 $V + H$

anisotropy,
$$R = \frac{V - H}{V + 2H}$$

Dynamic

$$R(t) = R_0 \exp(-t/\phi)$$

 ϕ = rotational correlation time

Fluorescence Anisotropy Decay

Ca²⁺–discharged clytin (22 kDa)

$$R(t) = R_0 \exp(-t/\varphi)$$

$$\varphi = 12.2 \text{ ns } (20 \text{ °C})$$

$$0.1 - 0.0 - 0.2 - 4 - 6 - 8 - 10 - 12 - 14 - 16 - 18$$
Time, ns

Malikova 2011

Fluorescence Anisotropy Decay

GFP (54 kDa, dimer)

Malikova 2011

Intra-dimer FRET

Clytia GFP dimer; R(calculated) = 32 Å $\varphi_1 = 0.5 \text{ ns}$

Malikova 2011

Anisotropy Decay Shows No Complex

Ca²⁺-discharged-clytin + GFP \rightleftharpoons ? $\phi = 12$ $\phi = 34 \rightarrow \phi = 33 \text{ ns}$

Malikova 2011

Hypothesis #3

A transient complex with a reaction intermediate

Clytin + Ca²⁺
$$\rightleftharpoons$$
 Ca²⁺-clytin (t_{1/2} \sim ms)
+ GFP \rightleftharpoons Ca²⁺-clytin-GFP \rightarrow
 $K_D \sim 1 \ \mu M$

↑FRET↓

→ Ca²⁺-discharged clytin*-GFP → Green

There is analogy to the antenna function of LumP

NMR detection of clytin-GFP complex

The ¹⁵N-HSQC resonances from only some amino acid residues are shifted on mixing the two proteins. This locates the weak protein-protein binding site.

GFP-photoprotein model

K_D~1 *mM* (dimer)

Titushin (2010)

Luciferases from Coleoptera

- 1. To discover how structure determines beetle bioluminescence colors.
- 2. Locate the Lase binding site.
- 3. Are there charged groups positioned to shift the resonance forms?
- 4. Locate hydrogen bonding interactions of oxy-Luciferin.

The Active Site

- (2006) a team at **Riken** (Japan) confirmed this location of the active site in FF-Lase.
- Determined the structure of FF-Lase (2DIR) bound with a substrate analog (DLSA) and a second structure with the products FF-L=O and AMP.
- LH₂-AMP can't be used because it would react, but it is safe to assume that the analog occupies the same active site.

RIKEN Structure

FF-Luciferin Analog

DLSA

Two-D Picture

A 2-D layout of the active site can help visualize interactions.

Conclusion-1

In the FF-Lase active site there are no charged side groups located in suitable positions that would lead to the postulated effect on the change in the resonance forms of L=O.

Conclusion-2

The structure of FF-Lase mutant S286N which gives **red** BL, was compared to the native form (wild-type, WT) which gives **red**, both containing FF-L=O and AMP. In the WT it was seen that the product is held much more rigidly than in the red mutant.

A **conformational restriction** of the excited product would explain variations in energy levels for the yellow emission among the types of beetle luciferases.

Sad Conclusion-3

The mechanism of the bioluminescence color shift in the Coleoptera, still remains to be illuminated.

Bacterial Luciferase

77 kDa α - β

Campbell (2009) Biochemistry

Lumazine Protein

Sato (2010) J. Bact.

Lumazine Protein-Bacterial Luciferase

Sato (2010) J. Bact.

FRET in bacterial bioluminescence

- Fluorescence dynamics investigation indicated a separation of < ~20 Å between the B-Lase intermediate and LumP.
- The spatial structure of the complex confirms this.
- Both LumP and the GFP complexes form more tightly in the course of the reaction. This would favor enzyme turnover.

Literature

Lee and Vysotski (2011). Structure and spectra in bioluminescence. On, *Photobiological Sciences Online* (K.C.Smith, Ed.).

http://www.photobiology.info/Lee-Vysotski.html

Vysotski and Lee. (2004) Ca²⁺-regulated photoproteins: Structural insight into the bioluminescence mechanism. Acc. Chem. Res. 37: 405-415.

Literature

Titushin, M., et al. (2011). Protein-protein complexation in bioluminescence, *Protein and Cell* 2: 957.

Nakatsu et al. (2006). Structural basis for the spectral difference in luciferase bioluminescence. Nature 440: 372.