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The problem

Approximation of multidimensional data by
low-dimensional objects

Self-simplification of essentially high-
dimensional sets

Terra Incognita between low-dimensional sets
and self-simplified high-dimensional ones.



Change of era

From Einstein’s “flight from
miracle.”

«... The development of this world of
ol e thought is in a certain sense a
Misha Molibog Graphics continuous flight from “miracle”.»

To struggle with complexity

"l think the next century will be the century of complexity."
Stephen Hawking =



Two main approaches in our
struggle with complexity

A large space
with something
interesting inside

IH

A “minimal” space
B with this interesting
content

In high dimensionality many different
things become similar, if we choose the
proper point of view



Karl Pearson
1901
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ILI. On Lines and Planes of Closest Fit tolSy.stems of Points
~y r _) 1‘. = L]
in Space. By KarL PearsoN, FLR.S.; University College,
London *.

1) TN many physical, statistical, and biological Investi-
) gations 1t is desirable to represent a system of
soints in plane, three, or higher dimensioned space by the
< hest-fitting ' straight line or plane.  Analytically this
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Principal points (K-means)

Data points x?

Approximation
by smaller finite sets:

1.
2.

3.
4.

Select several centres;
Attach datapoints to the
closest centres by springs;
Minimize energy;

Repeat 2&3 until converges.

Steinhaus, 1956;
Lloyd, 1957;
MacQueen, 1967




Approximation by algebraic
curves and surfaces
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lllustration: Nonlinear happiness

COUNTRY=1...192
( ) Quality of Life=+1

Gross product per person, $/person e

X = Life expectancy, years
Infant mortality, case/1000

Tuberculosis incidence, case/100000 (YEAR=1989,...,2005)

Russia trajectory

Quality of Life=-1 Principal curve
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Linear index explains 76%
Non-linearindex explains 93%



Constructing elastic nets
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Definition of elastic energy
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Are non-linear projections
better than linear projections?
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Wang et al., 2005 Dyrskjot et al., 2003



2.
Star
3
-5t
ar
RN

o(V)



Generalization: what is principal graph?
Ideal object: pluriharmonic graph embedment

negative (repulsing) spring

Elastic k-star (k edges, k+1 nodes).
The branchin energy |5

uk star = luk
i= l Ideal position of S0

(mean point of the star's leaves)

R-stars (ribs) |

Primitive elastic graph: all non-terminal nodes with
k edges are elastic k-stars.
The graph energy is

UG = Z Hedge +Z Zustal

edges k k—stars

Pluriharmonicgraph embedments generalize
straight line, rectangular grid (with proper choice of k-stars), etc.




Principal harmonic dendrites (trees)
approximating complex data structures
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Algorithm iterations

Visualization of 7-cluster

genome sequence structure
3D PCA plot

Metro map

Here clusters

overlapping on 3D PCA

plot are in fact well-separated
and the principal tree reveals this
fact




And much more
for low-dimensional subsets:

Local Linear Embedding

Isomap

Laplace Eigenmaps

Nonlinear Multidimensional Scaling
Independent Component Analysis

Persistent cohomology



Three provinces of the
Complexity Land
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