SibFU-2 February 2012

CHEMILUMINESCENCE

BIOLUMINESCENCE is an ENZYME CATALYZED CHEMILUMINESCENCE

Chemical Light

- Only a 130-year history
- 1877 Radziszewski: Lophine/O₂
- 1928 Albrecht: Luminol/O₂
- 1963 Chandross: Oxalyl chloride/H₂O₂/fluorescent dye
- 1964 Weller: e -transfer chemiluminescence
- 1982 Schaap: TMMPD/OH (a dioxetanone)
- These are the well-investigated cases

Variety of CL reactions

AMPPD

Application to any diagnostic protocol using alkaline phosphatase

Proposed chemistry for Luminol chemiluminescence

luminol

3-amino-phthalate

Chemi-excitation

$$LH_2 + O_2 \rightarrow L=O^* + H_2O$$

Chemical exothermicity must be sufficient to populate the singlet excited state, the same as photon excited L=O.

To identify L=O* as the CL emitter, its fluorescence spectrum should be close to a match to the CL spectrum.

Luminol spectral match

The close match of the luminol chemiluminescence emission and the 3-aminophthalate fluorescence, indicates that the 3-aminophthalate (AP) is the emitter.

Abbreviations

$$LH_2 + O_2 \rightarrow H_2O + L=O^*$$
 (excited state)
 $L=O^* \rightarrow L=O + hv$ (light)

 $Q_{\mathbf{V}}$ = chemical yield of L=O

 Q_F = fluorescence efficiency

 Q_E = excitation efficiency

 Q_C or Q_B = quantum yield of CL or BL

$$\mathbf{Q}_{\mathbf{C}} = \mathbf{Q}_{\mathbf{Y}} \times \mathbf{Q}_{\mathbf{F}} \times \mathbf{Q}_{\mathbf{E}}$$

Absorption -> Fluorescence

Light excitation in the absorption band produces fluorescence at longer wavelengths

Franck-Condon Principle

- 1. Electronic transitions are essentially **instantaneous** (10⁻¹⁶ s) on the time-scale of nuclear movement (10⁻¹² s).
- 2. These are called **vertical** transitions, from the ground to the Franck-Condon State.
- 3. Transition probability ∞ **overlap** of respective vibrational wave-functions.

Vertical Transitions

Molecular dimensions \rightarrow

Spectrum Analysis

1. The harmonic oscillator model for the potential well predicts the transition probabilities to be statistical, i.e., Normal or Gaussian distributions.

$$\frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Skewed Gaussians

In reality the well functions are anharmonic due to dissociation at the highest energies and are better approximated by the "Morse Function".

Asymmetric Gaussian fits are required.

Diffraction Grating Spectrometer

Spectra obtained experimentally need to be corrected for artifacts:

- 1. The dispersion is constant with λ so the spectra are $F(\lambda)\Delta\lambda$ versus λ .
- 2. The grating is "blazed" to transmit maximally at say 500 nm and is also polarization dependent.
- 3. Chemiluminescence intensity decay dF/dt, must be corrected for, as the grating scans dλ/dt.

Energy Spectra

Physically meaningful spectra are a plot of the function $\Delta E(v)/\Delta v = F(v)$. Experimental spectra however are collected as the function

$$\Delta F(\lambda)/\Delta \lambda = F'(\lambda)$$

frequency,
$$v = c/\lambda$$

 $\Delta v = -c$. $\Delta \lambda / \lambda^2$

$$F(v) = -c. \lambda^2 F'(\lambda)$$

Firefly analysis

Green-orange range of BL all have FWHM = 2600 cm⁻¹. The red BL with Zn²⁺, is narrower, a different electronic form, FWHM = 1700 cm⁻¹.

Chemi-excitation

 Chemi-excitation has a reverse Franck-Condon problem

$$A + B \rightarrow C - D^* \rightarrow CD + h\nu$$

- Chemical energy is released by bond breakage from slow movement of atoms.
- Contradicts the Franck-Condon principle.

Energies of molecules

Maxwell-Boltzman Distribution

In a system of N molecules, their velocities or energies (ϵ) are distributed according to probabilities:

 $n = n_0 exp(-ε/kT)$, where n = # with energy ε $n_0 = \#$ in energy level < ε.

Chemical Reaction Energy

Transition State Theory

Molecular collisions occur in 1-10 ps steps and those that achieve an energy $> \Delta E^{\ddagger}$ (activation) jump over to products.

 ΔH = enthalpy

0-0'-Excitation Energy

The reaction must release energy > 0-0'

Chemiexcitation Theories

1. Radical recombination

A + B
$$\rightarrow$$
 C• + D• \rightarrow CD*
This would be a "vertical" process

Electrochemiluminescence Chemically induced electron exchange luminescence (CIEEL)

2. Crossing of reaction potential energy surfaces (R. Marcus, Nobel Chemistry, 1992)

Marcus Theory

Marcus proposed reaction co-ordinate crossing near the transition state

Oxalyl chloride CL

In 1963 Chandross discovered the bright chemiluminescence from the reaction of oxalyl chloride with H₂O₂ provided the mixture also contained a highly fluorescent dye. The emission was from the dye fluorescence.

Glow-stick Reaction

A high-energy intermediate is stable for >150 s

The Light Stick

(Glowstick, Cyalum))

- Invented in 1965 at the American Cyanamide Co.
- High $Q_C = 0.34$
- Mechanism is intensely investigated 1965-2012
- Dioxetandione high energy intermediate proposed.

Sensitized Chemiluminescence

- The light stick emitter is the excited state of the included dye.
- The mechanism of dye excitation is still a mystery

Evidence for the dioxetandione

2008. The transient high energy intermediate was trapped and characterized by low temperature Carbon-13 Nuclear Magnetic Resonance.

SCHEME 1. Elementary Peroxyoxalate Reaction Mechanism

O CI
$$+ H_2O_2$$
 OOH CI OH CI OH (HEI)

$$R = CO_2 \text{ or CCIOHO}$$

$$CO_2 + R$$

¹³C-NMR

- **Bonding environment** of a C atom is reflected by the signal from the specifically enriched ¹³C.
- ¹²C (naturally abundant) gives no signal. ¹⁴C is radioactive.
- For ¹³C-NMR, the molecule is synthesized enriched with ¹³C.

NMR of Carbon-13 enriched oxalyl ester

$$Ar \longrightarrow O \longrightarrow Ar$$

$$+ H_2O_2 + OH \longrightarrow Ar \longrightarrow O \longrightarrow OH$$

$$- Ar \longrightarrow O \longrightarrow OH$$

$$- Ar \longrightarrow O \longrightarrow OH$$

$$- Ar \bigcirc O \longrightarrow OH$$

¹³C-NMR result

Reaction with H_2O_2 in tetrahydrofuran (THF) at -80 °C in presence of dye, 9,10-diphenylanthracene.

C-13 assignments

- Assignments: -80C oxalyl Cl 158.9
- -70C monoperoxyoxCl, doublets 153.9 and 159.3 is the unsymmetrical intermediate (2). These disappear by -60.
- -70C Dioxetanedione, singlet 154.5; disappears >-20C.
- -60 154.5 broadened indicating dynamic process and is reversible.
- >-60 160.4 unassigned
- <RT all show 125.6 CO2 and 184.5 CO.

Dioxetanes

First stable dioxetane synthesized in 1969 was found to be brightly chemiluminescent. Efficient preparation by reaction of **singlet oxygen** with an olefin, e.g.

Singlet Oxygen

Molecular oxygen by itself is not very chemically reactive due to spin conservation rules. Singlet oxygen ($O_2^1 \Delta_G$) is produced by photosensitization via a dye triplet state. **Methylene Blue** is popular.

$$^{3}\text{MeB*} + ^{3}\text{O}_{2} \rightarrow \text{MeB} + \text{O}_{2}^{1}\Delta_{G}$$

Diradical Excitation

Homolytic bond scission of the weaker O-O bond occurs, then simultaneous annihilation and C-C bond collapse.

Mostly triplet excited states

Quantum Chemistry

After breakage of O-O, computation shows that the excited state (T_1) and transient are degenerate \longrightarrow one T_1 ketone product and the other in the S_0 ground state.

Chemiexcitation

CIEEL or CTIL?

Chemically Initiated Electron Exchange Luminescence 1979

$$R-O-O-R + ED \xrightarrow{ET} R-O-O-R ED$$
encounter complex
$$R=O+ED \xrightarrow{ET} R=O+ED^*$$

Charge Transfer Initiated Luminescence

$$R-O-O-R + ED \longrightarrow R-O-O-R''ED$$

$$\longrightarrow 2R=O + ED^*$$

Diphenoyl Peroxide

The CIEEL hypothesis was based on the chemiluminescence intensity dependence on the oxidation potential and concentration of the fluorescent dye, now called an Activator (ACT).

ACT
$$+ CO_2 + ACT^*$$

Imidazopyrazinone

The luciferins of many marine bioluminescent animals are derivatives of this central ring structure.

Chemiluminescence occurs spontaneously in DMSO with oxygen. It is **base** catalyzed.

Coelenterazine CL in basic DMSO

- Oxygen adds to the coelenterazine anion
- Product yield of coelenteramide = 85%
- Coelenteramide anion fluorescence in basic DMSO, $\lambda_F = 455 \text{ nm}$
- Chemiluminescence $\lambda_c = 455 \text{ nm}$
- $Qc = 0.0003 < Qf \sim 0.1$

Chemiluminescence

$$Q_Y = 0.89 \ Q_C = 0.0003 \ \lambda_C = 455 \ nm$$

amide anion
$$\lambda_F$$
 = 455 nm; neutral λ_F = 398 nm $Q_F \sim 0.1$

Coelenterazine Excitation

- 1. Possible CIEEL-type excitation
- 2. Product and emitter is the excited anion
- 3. Amide or phenolate anion?

Coelenterazine NMR

Stable (-78°C) peroxidic luminescent intermediate formed in CF₃CH₂OHCH₃OH

Product Analysis

After warming

Photooxidation ¹³C-NMR

Chemiluminescence is emitted on warming

neutral product ↓ ↓anion

Firefly Luciferin

Firefly luciferin was the first luciferin to have its structure fully determined (1961)

D-Firefly Luciferin (LH₂)

Beetle Luciferin

Notice the **asymmetric** position at C-4. Only **D-isomer** produces bioluminescence.

Firefly Chemistry

Chemiluminescence of model compounds in DMSO with tert-butoxide. Postulated dioxetanone intermediate (**B**)

Oxygen-18

Heavy atom labeling and detection by **mass spectra** supports the dioxetanone postulate. One oxygen-18 found in each product.

Red or Yellow Emitters

615 nm

560 nm

Firefly CIEEL?

Firefly Quantum Mechanics!

CL of Luciferin Analogs

Chemiluminescence: a - c RED stronger base \rightarrow 2 bands d RED only $Q_C = 0.1$

Product fluorescence: a - c YELLOW d RED $Q_F = 0.6$

Fluorescence of oxyluciferin ionic forms

BLUE

YELLOW

keto-OxyLH₂

phenolate-enol-OxyLH⁻

phenolate-keto-OxyLH-

YELLOW

RED

YELLOW

Literature

Seliger and Morton (1968) *Photophysiology* Vol.IV (Giese, A.C., Ed.). A physical approach to bioluminescence. (Academic Press, NY).

Gundermann and McCapra (1987) Chemiluminescence in Organic Chemistry (Springer- Verlag, Berlin).

Matsumoto (2004) Advanced chemistry of dioxetane-based chemiluminescent substrates originating from bioluminescence. *J. Photochem Photobiol C: Photochem. Reviews* 5: 27.