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CHEMILUMINESCENCE

BIOLUMINESCENCE is an ENZYME CATALYZED
CHEMILUMINESCENCE



Chemical Light

* Only a 130-year history

1877 Radziszewski: Lophine/O,

1928 Albrecht: Luminol/O,

1963 Chandross: Oxalyl chloride/H,O./fluorescent dye
1964 Weller: e —transfer chemiluminescence

1982 Schaap: TMMPD/OH (a dioxetanone)

» These are the well-investigated cases



Variety of CL reactions
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Application to any diagnostic protocol using alkaline
phosphatase



Proposed chemistry for Luminol
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3-amino-phthalate



Chemi-excitation

LH, + O, — L=0* + H,0

Chemical exothermicity must be sufficient to
populate the singlet excited state, the same as
photon excited L=0.

To identify L=0O* as the CL emitter, its
fluorescence spectrum should be close to a
match to the CL spectrum.



Luminol spectral match

The close match of the luminol
chemiluminescence emission and the 3-
aminophthalate fluorescence, indicates that
the 3-aminophthlalate (AP) is the emitter.
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Abbreviations

LH, + O, =2 H,0+L=0* (excited state)
L=0* > L=0 + hv (light)

Qy = chemical yield of L=0
Qg = fluorescence efficiency
Qg = excitation efficiency
Q. or Qg = quantum yield of CL or BL

QC =QYXQFXQE



Absorption -> Fl Jjorescence
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Light excitation in the absorption band produces fluorescence at longer wavelengths



Franck-Condon Principle

1. Electronic transitions are essentially
instantaneous (10-°s) on the time-scale of
nuclear movement (1072 s).

2. These are called vertical transitions, from
the ground to the Franck-Condon State.

3. Transition probability «c overlap of
respective vibrational wave-functions.



Vertical Transitions
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Spectrum Analysis

1. The harmonic oscillator model for the potential
well predicts the transition probabilities to be
statistical, i.e., Normal or Gaussian distributions.
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Skewed Gaussians

In reality the well functions are anharmonic due to
dissociation at the highest energies and are better
approximated by the “Morse Function”.
Asymmetric Gaussian fits are required.
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Diffraction Grating Spectrometer

Spectra obtained experimentally need
to be corrected for artifacts:
1. The dispersion is constant with . so

the spectra are F()L)AL versus .
2. The grating Is "blazed” to transmit

maximally at say 500 nm and is also
polarization dependent.

3. Chemiluminescence intensity decay
dF/dt, must be corrected for, as the grating

scans d)/dt.



Energy Spectra

Physically meaningful spectra are a
plot of the function AE(v)/Av = F(v).
Experimental spectra however are
collected as the function
AFONA L=F ())

frequency, v =c/h
Av =-c. Ah /12

F(v) =-c. A2F'())



Firefly analysis

Green-orange range of BL all have FWHM = 2600 cm™. The red BL
with Zn?*, is narrower, a different electronic form, FWHM = 1700

cm-!.
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Chemi-excitation

e Chemi-excitation has a reverse Franck-
Condon problem

A+B —- C-D*— CD+hv

* Chemical energy is released by bond
breakage from slow movement of atoms.

* Contradicts the Franck-Condon principle.



Energies of molecules
Maxwell-Boltzman Distribution
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Fia, 47, Maxwell’s distribution law

In a system of N molecules, their velocities or energies (¢) are distributed
according to probabilities:

n = nyexp(-¢/kT), where

n = # with energy ¢

Ny, = #in energy level <¢ .



Chemical Reaction Energy
Transition State Theory
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Molecular collisions occurin 1-10 ps steps and those that

achieve an energy > AE* (activation) jump over to
products.

AH = enthalpy



0-0"-Excitation Energy

The reaction must release energy > 0-0°



Chemiexcitation Theories

1. Radical recombination

A+B— Ce+De— CD*
This would be a “vertical” process

Electrochemiluminescence
Chemically induced electron exchange
luminescence (CIEEL)

2. Crossing of reaction potential energy surfaces
(R. Marcus, Nobel Chemistry, 1992)
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Oxalyl chloride CL

In 1963 Chandross discovered the bright
chemiluminescence from the reaction of
oxalyl chloride with H,O,, provided the
mixture also contained a highly fluorescent
dye. The emission was from the dye
fluorescence.

CI-O-C-C-0O-Cl + H,0, + dye > dye* + products
[l
00



Glow-stick Reaction
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A high-energy intermediate is stable for >150 s



The Light Stick
(Glowstick, Cyalum))

* Invented in 1965 at the American Cyanamide Co.
» High Q. = 0.34

* Mechanism is intensely investigated 1965-2012

» Dioxetandione high energy intermediate proposed.

Po—o

dioxetandion

dye*—) dye + hv



Sensitized Chemiluminescence

* The light stick emitter is the excited state
of the included dye.

* The mechanism of dye excitation is still a
mystery



Evidence for the dioxetandione

2008. The transient high energy intermediate
was trapped and characterized by low
temperature Carbon-13 Nuclear Magnetic
Resonance.

SCHEME 1. Elementary Peroxyoxalate Reaction Mechanism
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13C-NMR

 Bonding environment of a C atom is reflected by
the signal from the specifically enriched 13C.

« 12C (naturally abundant) gives no signal. “C is
radioactive.

* For 13C-NMR, the molecule is synthesized
enriched with 13C.



NMR of Carbon-13 enriched oxalyl
ester
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13C-NMR result

Reaction with H,0O, in tetrahydrofuran (THF)
at -80 °C in presence of dye, 9,10-
diphenylanthracene.



C-13 assignments

Assignments: -80C oxalyl Cl 158.9

-70C monoperoxyoxCl, doublets 153.9 and 159.3 is the
unsymmetrical intermediate (2). These disappear by -60.

-70C Dioxetanedione, singlet 154.5; disappears >-20C.

-60 154.5 broadened indicating dynamic process and is reversible.
>-60 160.4 unassigned

<RT all show 125.6 CO2 and 184.5 CO.



Dioxetanes

First stable dioxetane synthesized in 1969 was
found to be brightly chemiluminescent. Efficient
preparation by reaction of singlet oxygen with an
olefin, e.q.
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Diradical Excitation

Homolytic bond scission of the weaker O-O
bond occurs, then simultaneous annihilation
and C-C bond coIIaDse

Rj:% T R1HRI. fasf )k )k

Rza

Mostly triplet excited
states



Quantum Chemistry
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After breakage of O-O, computation shows that the excited state

(T4) and transient are degenerate — one T, ketone product and
the other in the Sy ground state.



Chemiexcitation
CIEEL or CTIL?

Chemically Initiated Electron Exchange Luminescence
1979

T~ ET o(-) .
+ ED == R-0-0-R ED

encounter complex

R-0-O-R

.
t >~ BETL p-0 + ED*

Charge Transfer Initiated Luminescence

R-O-O-R+ED

R-O-O-R + ED
2R=0 + ED*




Diphenoyl Peroxide

The CIEEL hypothesis was based on the
chemiluminescence intensity dependence on the
oxidation potential and concentration of the
fluorescent dye, now called an Activator (ACT).
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Imidazopyrazinone
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Chemiluminescence occurs spontaneously in
DMSO with oxygen.

It is base catalyzed.



Coelenterazine CL in basic DMSO

* Oxygen adds to the coelenterazine anion
* Product yield of coelenteramide = 85%

« Coelenteramide anion fluorescence in basic
DMSO, A =455 nm

« Chemiluminescence A, =455 nm

« Qc =0.0003 < Qf ~ 0.1



Chemiluminescence
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Coelenterazine Excitation
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1. Possible CIEEL-type excitation
2. Product and emitter is the excited anion
3. Amide or phenolate anion?




Coelenterazine NMR
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Stable (-78°C) peroxidic luminescent intermediate
formed in CF;CH,OHCH,;0OH



Product Analysis

After warming
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Photooxidation °C-NMR
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Chemiluminescence is emitted on
warming
neutral product +  Janion
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Firefly Luciferin

Firefly luciferin was the first luciferin to have
Its structure fully determined (1961)
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D-Firefly Luciferin (LH3)

Beetle Luciferin

Notice the asymmetric position at C-4.
Only D-isomer produces bioluminescence.



Firefly Chemistry

Chemiluminescence of model compounds in DMSO
with tert-butoxide. Postulated dioxetanone

iIntermediate (B)
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Oxygen-18
Heavy atom labeling and detection by mass
spectra supports the dioxetanone postulate. One
oxygen-18 found in each product.
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Red or Yellow Emitters

AMP

> CO,
1 + 60 Kcal

Oxyluciferin C1
(Red light)

615 nm

Oxyluciferin C2
(Yello-green light)

560 nm
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Firefly CIEEL?

_U,CLH’ — Y
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Firefly Quantum Mechanics!

A Seam of Sloped
CSS Conical Intersection
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Fluorescence of oxyluciferin ionic
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